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Abstract. Successive line over-relaxation can be used to solve the equations for 
certain finite-difference analogs of the Neumann problem for Poisson's equation on 
a rectangle. In this note, asymptotic estimates for the choice of relaxation parameter 
and rate of convergence of this method are collected. These results are then applied 
to some recent computational experiments carried out by John Gary. U 

Introduction. Approximate solutions to the system of equations corresponding 
to a finite-difference analog of the Neumann problem can be found iteratively by 
successive line over-relaxation (SLOR) [4]. In a recent paper [3] John Gary carried 
out a computational study of this problem and the related Dirichlet problem. In 
particular, when he used SLOR to solve the finite difference equations for Poisson's 
equation on a rectangle, he noticed a distinct difference in the rates of convergence 
for Dirichlet and Neumann boundary conditions. This observation can be readily 
accounted for by using results of Keller [5] and Parter [6]. In this note we collect the 
pertinent formulae, and use them to explain the behavior of the solutions of the 
particular problem that Gary considered. 

The Neumann Problem. Let R be the rectangle (0, a) X (0, b), and introduce a 
mesh on R of width Ax in the x-direction and Ay in the y-direction. We assume that 
Ax = a(Nx + 1)-1 and Ay = b(Ny + 1)-1 for integers Nx and Ny. Using the usual 
5-point approximation for Au, and the usual first order extrapolation for the normal 
derivative Ou/Ov (see [3]), we write the finite-difference equations as a matrix equa- 
tion Lu = p. We assume that the vector u = (uij) is ordered in blocks of vertical 
columns, with u ij = u (iAx, jAy). We can take 2 to have the form 2 = D + U + UT, 
where D is a block diagonal matrix with positive-definite entries, and U is a block 
matrix with entries - aI on the super-diagonal, where a = (Ay)2(Ax)-2. The 
NxNy X NxNy matrix 2 is positive semidefinite with a one-dimensional null-space, 
which is spanned by the vector e all of whose components are 1. 

For a real parameter y with 1/2 < y < 1 we define N = yD + UT and P = 

(y - 1)D - U. Then N is nonsingular, so we define M = N-1P, and the (vertical) 
SLOR iteration takes the form 

u(?) arbitrary, U(n+l) = MU () + N-'p. 

If we assume that pTe = 0, so that Lu = p has a solution, then, for any choice of 
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u(?), the iterates U() converge to a solution of Lu = p [4, p. 285]. If we define 6(n)= 

u - U(n) then (n) = MnE(E). An elementary calculation then shows that 

I U(nl u*11. 

( n 

( n+_1o where Su* = p, c is a constant that depends only on the initial guess u (), Xo 
max { 1X1 Ix = eigenvalue of M, 1XI < 1 }, and po is the maximum degree of any 
Jordan block corresponding to an eigenvalue X of M with 1X = XO. 

The Rate of Convergence. We now define the rate of convergence to be ro 
-ln Xo. The question of estimating X0 can be reduced to the problem of estimating 
the eigenvalues of the iteration matrix Ml for the corresponding Jacobi iterative 
procedure [2, p. 250]. In particular, by using these well-known techniques, it follows 
that if we use an optimum relaxation parameter yo = 2(1 + (1 - ,0o2)112), then 

So = (1- (1 - /u42)12)(J + (1 _ 102)112)-l. 

The quantity ,.o is defined by,4o = max { /.41 L,u eigenvalue of Ml, I,tl < 1 }, and an 
estimate for 1u0 is provided by the following theorem of Parter [6, p. 343]: 

THEOREM 1. Let A be the smallest nonzero eigenvalue X of the analytic problem 

Auu+Xu=0 in R, 
du/dv = 0 on dR 

u 0 O . 

Then as Ax and Ay tend to 0, 4 ,v 1 - (A/2)(Ax)2 + o(AxAy). 
For the Neumann problem on a rectangle, these eigenvalues are [1, p. 429] 

Xmn = 1r2(m2a-2 + n2b-2) for m, n > 0. Thus A-= 7r2c-2 for c = max (a, b). This can 
be summarized in the following 

THEOREM 2. If SLOR is used to solve thefinite-difference equations for the Neumann 
problem on a rectangle, with optimal relaxation parameter 7yo - (1 + rc-' Ax), then 
Xo -( (1- 27rc- Ax). Thus the asymptotic rate of convergence is rO -- 27rc-c Ax. 

Application to the Results of Gary. In [3] Gary considered the following class of 
problems:** 

Let R((a) = (0, a) X (0, a'x12a) for 0 < a ? 1. Solve the Dirichlet and Neumann 
problems on R(a) by SLOR with N. and N, fixed (using the optimal relaxation 
parameter), and let the rates of convergence be rD(a) and rN(a) respectively. 

Gary observed that rD(a) increases as a decreases. This agrees with the known 
results for the Dirichlet problem [5], and in fact it is easy to verify the asymptotic 
estimate, rD(a) - 2r(Nx + 1)-l(1 + a-')'2. In addition, Gary conjectured that 
rNv(a) is independent of a. This now follows immediately from Theorem 2, since 
rAy(a) - 2ir(Nx + 1)-'. 

** There is an inconsistency in Gary's paper [31. Namely, if N,, = N, = 40, a = 47r and 
b = 2wr then Ca = 1/4, so that a cannot vary. There are several ways to resolve this difficulty, 
and Dr. Gary was kind enough to send a copy of his computer program so that we could verify 
that the problem as stated above is the one he actually solved. 
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